The SET Domain Is Essential for Metnase Functions in Replication Restart and the 5’ End of SS-Overhang Cleavage
نویسندگان
چکیده
Metnase (also known as SETMAR) is a chimeric SET-transposase protein that plays essential role(s) in non-homologous end joining (NHEJ) repair and replication fork restart. Although the SET domain possesses histone H3 lysine 36 dimethylation (H3K36me2) activity associated with an improved association of early repair components for NHEJ, its role in replication restart is less clear. Here we show that the SET domain is necessary for the recovery from DNA damage at the replication forks following hydroxyurea (HU) treatment. Cells overexpressing the SET deletion mutant caused a delay in fork restart after HU release. Our In vitro study revealed that the SET domain but not the H3K36me2 activity is required for the 5' end of ss-overhang cleavage with fork and non-fork DNA without affecting the Metnase-DNA interaction. Together, our results suggest that the Metnase SET domain has a positive role in restart of replication fork and the 5' end of ss-overhang cleavage, providing a new insight into the functional interaction of the SET and the transposase domains.
منابع مشابه
Biochemical characterization of a SET and transposase fusion protein, Metnase: its DNA binding and DNA cleavage activity.
Metnase (SETMAR) is a SET and transposase fusion protein that promotes in vivo end joining activity and mediates genomic integration of foreign DNA. Recent studies showed that Metnase retained most of the transposase activities, including 5'-terminal inverted repeat (TIR)-specific binding and assembly of a paired end complex, and cleavage of the 5'-end of the TIR element. Here we show that R432...
متن کاملMetnase promotes restart and repair of stalled and collapsed replication forks
Metnase is a human protein with methylase (SET) and nuclease domains that is widely expressed, especially in proliferating tissues. Metnase promotes non-homologous end-joining (NHEJ), and knockdown causes mild hypersensitivity to ionizing radiation. Metnase also promotes plasmid and viral DNA integration, and topoisomerase IIα (TopoIIα)-dependent chromosome decatenation. NHEJ factors have been ...
متن کاملEEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair
Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5' end resection near the fo...
متن کاملThe SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair.
The molecular mechanism by which foreign DNA integrates into the human genome is poorly understood yet critical to many disease processes, including retroviral infection and carcinogenesis, and to gene therapy. We hypothesized that the mechanism of genomic integration may be similar to transposition in lower organisms. We identified a protein, termed Metnase, that has a SET domain and a transpo...
متن کاملCloning and Expression of Protease 2A from Coxsakievirus B3
Protease 2A (2Apro) of coxsackievirus B3 (CVB3) plays a major role in viral replication. In case of infection, viral proteins are being synthesized from viral mRNA using host biosynthesis machinery. 2Apro of virus, after being synthesized, exhibits two critical functions, cleavage of viral proteins and breaking eukaryotic initiation factor 4G. The enzyme plays an essential role in viral replic...
متن کامل